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Simple Moving Averages (SMA) are ubiquitous in technical analysis.  However, the truth 
is that they are not very good filters.  The purpose of this article is to present simple, 
easy to program, modifications that represent a near optimum compromise between 
filtering and lag for their use in technical analysis of the market. 
 
The best statistical estimate of the true value of a group of data points is an average of 
those data points.  In the case of a time series the group of data points for averaging can 
be selected as an analysis length.  Then, this grouping is changed by discarding the oldest 
data point and adding the new data point.  This is a moving average.  In this sense, a 
Simple Moving Average creates the best estimate of the time series by connecting the 
dots.  However, the time center of each filter output is the horizontal center of each of 
the averages.  Thus, the group delay lag is approximately half the length of the averaging 
period.  This lag is unavoidable and cannot be altered in moving average type filters. 
 
Some traders try to negate the SMA lag by centering the filter results half the filter length 
back from the current bar.  This just doesn’t work because trading is done at the right 
hand edge of the chart where the centered moving average cannot exist.  Therefore, 
centered moving averages are to be avoided.  Patches to fix the missing data just do not 
work. 
 
The Simple Moving Average can be viewed as multiplying the data points within the 
averaging period by unity and multiplying all other data points by zero.  The outline of 
multiplying factor is therefore a rectangular window whose coefficients are all unity.   As 
the averaging proceeds, the window just slides along the data stream.   
 
Multiplication in the time domain is convolution in the frequency domain.  That means 
that the frequency response of the Simple Moving Average is the Fourier Transform of 
the rectangular window.  The Fourier Transform of a rectangular window is text book, 

and is of the shape of Sine(X) / X, where X = *f*L, and L is the length of the rectangular 
window measured in data samples.  f is the normalized frequency of the response, and 
ranges from a minimum of zero to the maximum Nyquist frequency of 0.5.  The frequency 
response of an 8 element Simple Moving Average is shown in Figure 1.  Traders prefer 
to think in terms of wavelength rather than frequency.  Wavelength is the reciprocal of 
frequency.  So, a Nyquist frequency of 0.5 has a 2 bar wavelength, a frequency of 0.1 
has a 10 bar wavelength, etc. 
 
With reference to Figure 1, the SMA is a low pass filter, which means that it passes the 
very low frequencies and attenuates the higher frequencies.  The SMA frequency 
response has zeros when the data wavelength are multiples of the window length because 
the numerator of the Fourier Transform goes to zero when the argument of the Sine are 
multiples of Pi.  The first zero occurs at a frequency of .125 (a wavelength of 8).  The 



passband of a filter is defined as the frequency at which the filter attenuates the data by 
half its power, or the -3 dB point.  This occurs at a frequency of .056.  It is easier to 
remember the approximation that the -3 dB point occurs at half the wavelength of the 
first zero.  That is, the SMA half power point occurs at a wavelength that is twice the 
length of the SMA window.  In the case of Figure 1, this frequency is .0625. 
 
The peak of the first sidelobe of the SMA filter occurs approximately when the numerator 

of the Sine(X) / X function is unity.  In this case the frequency is 1 / (1.5*L) and X=1.5*,  
If the numerator is unity, then the value of the filter transfer response is just the reciprocal 
of X, or -13.5 dB.  This is not much attenuation.  The amplitude of the data is only reduced 
to about 21 percent of its unfiltered value at this frequency.  This poor attenuation is 
often referred to as sidelobe leakage of the filter.  For reference purposes to other filters, 
the SMA frequency response crosses the identifiable -10 dB grid line at a frequency of 
.092. 
 
As an aside, I was puzzled as a student why Sine(X) / X asymptotically approached unity 
as X approaches zero.  Rational functions usually blow up when the denominator 
approaches zero.  The answer is derived by considering the power series expansion of a 
sine function.  It is: 
 
Sine(X) = X – X3/3! + X5/5! - …….. 
 
So, if X is very small, then all but the first term can be neglected.  Thus, Sine(X) / X 
approaches unity as X approaches zero.  I guess small things amuse great minds. 
 



 
Figure 1.  Eight Element Simple Moving Average Frequency Response 

 
I want to exclude Weighted Moving Average type filters from this discussion.  Weighted 
Moving Averages have been proposed as a means to reduce lag.  However, they have all 
the bad characteristics of phase distortion found in Exponential Moving Averages and also 
have the undesirable group delay lag characteristics as a function of the filter length 
found in Simple Moving Averages.  They have the worst of all worlds.  So, I am going to 
only address Finite Impulse Response (FIR) filters whose coefficients are symmetrical 
about the center point of the filter. 
 
An impulse is a mathematical rectangle having infinite height and zero width such that 
the area of the rectangle is unity.  More informally, just think of it as a data spike.  An 
FIR filter is one where the filter has an output when the impulse is within the finite window 
length of the filter.  A SMA is a special case of a FIR filter where the shape of the window 
is a rectangle.  But the coefficients of a FIR filter can trace out any outline shape as long 
as the window has symmetry about its center point.  The reason a SMA has such a poor 
frequency response is that the rectangular window shape is sharply discontinuous at the 
leading and trailing edges.  Better filtering occurs when smooth transitions occur at the 
beginning and ends.  The outline of good filter coefficients would look more like a bell-



shaped curve than a rectangle.  There are a jillion widows1.  Most are difficult to program.  
Many have such a slow transitions that a large number of data samples have a minimum 
contribution to filtering.  That means the filters have to be very long to get anywhere 
near the same amount of smoothing obtainable from an SMA.  That means that such 
filters, while being really good filters, have a large amount of lag.  In trading it is better 
to get an approximate answer with no lag rather than getting the right answer ten bars 
too late.   
 
Perhaps the easiest window to program has triangular weighting.  For example, an eight 
element FIR filter would have the coefficients as [1 2 3 4 4 3 2 1] / 20.  One wants to 
divide each of the coefficients by to total sum to cause the filter to have unity gain at 
zero frequency.  This same idea is used when taking an average.  Although triangular 
weighting still has discontinuities, its frequency response, shown in Figure 2, is a 
substantial improvement over a SMA.  The highest sidelobe is at -26 dB, a whopping 13 
dB improvement.  The half power bandwidth is increased to be at .072, and or a graphical 
comparison to the SMA bandwidth, the frequency where the response crosses the -10 dB 
level is at .125.  Note the frequency of the first zero has also increased.  The beamwidth 
increases are attributable to a decreased efficiency by not using the full amplitude of all 
the coefficients.  The ratio of the SMA half power beamwidth to the beamwidth of a 
windowed filter is called aperture efficiency.  In this case of the triangular weighting, the 
aperture efficiency is 77.8%. 
 
The EasyLanguage code to compute a generalized triangularly weighted SMA oscillator is 
given in Code Listing 2. 
 

                                        
1 https://en.wikipedia.org/wiki/Window_function 



 
 

Figure 2.  Eight Element Triangular Weighted SMA Frequency Response 

 
 
Another easy to program weighting is called the Hamming Window.  The outline of the 
shape of the coefficients is called “Cosine on a Pedestal”, although the coefficients are 
more conveniently calculated as a Sine function.  The EasyLanguage code to compute an 
SMA with a Hamming window is given in Code Listing 3.  Figure 3 shows the frequency 
response of an Eight Element Hamming window where the first element pedestal height 
is the Sine of 10 degrees.  The highest sidelobe is at -25 dB, about the same level as the 
largest sidelobe obtained with a triangular distribution.  However, because the window is 
a smoother function, almost all the other sidelobes are below -40 dB.  The half power 
beamwidth is at a frequency of .074, also about the same as with the triangular 
distribution. 
 



 
Figure 3.  Hamming Window with Sine(10) Pedestal SMA Frequency Response. 

 
 
A still smoother weighting function that is easy to program is called the Hann Window.  
The Hann Window is often described as a “Sine Squared” distribution, although it is easier 
to program as a Cosine subtracted from unity.  The shape of the coefficient outline looks 
like a Sinewave whose valleys are at the ends of the array and whose peak is at the 
center of the array.  This configuration offers a smooth window transition from the 
smallest coefficient amplitude to the largest coefficient amplitude.  The EasyLanguage 
code to compute an SMA with a Hann window is given in Code Listing 4.  Figure 4 shows 
the frequency response of an Eight Element Hann window.  The highest sidelobe is at -
32 dB which is the best of the easy to program window alternatives.  The half power 
beamwidth is at a frequency of .08, which is only marginally larger than the half power 
bandwidth produced by a Hamming Window. 
 



 
Figure 4.  Hann Window SMA Frequency Response. 

 
 
So, which window function is the best to use?  It is a tradeoff between ease of 
programming, minimizing sidelobe leakage, and the amount of group delay lag induced 
to obtain the desired amount of smoothing.  From a filtering perspective here is no clear 
“best” answer.  Figure 5 shows the four FIR filters in comparison, where they all have the 
Length parameter set to 20.  They all look pretty much the same except the SMA is 
noticeably noisier than the windowed versions. 
 



 
Figure 5.  Comparison of Four Windowed FIR Filters 

 
 
However, from a trading perspective the Hann Window is the clear winner.  I routinely 
use the Rate of Change (ROC) of the filter to help with my trading decisions.  The ROC 
identifies the peaks and valleys of the filtered data occurring exactly when the ROC 
crosses through zero.  Having a relatively smooth ROC is therefore important to making 
unambiguous trading decisions.  The rate of change operation is a high pass filter itself, 
so it exaggerates the high frequency noise of the filter.  You can see the relative noisiness 
when the ROCs of the four filters are plotted in Figure 6.  All filters are set to a length of 
20 bars.  The SMA ROC is very, very noisy.  The Triangle Window ROC is smoother, and 
even smoother than the ROC of the Hamming Window with a 10 degree pedestal.  The 
Hamming Window can be made to be smoother by reducing the pedestal size up to a 
limit.  But there is not much benefit in doing that because the Hann Window produces 
the smoothest waveform by far. 
 



 
Figure 6.  Smoothness Comparison of the ROC of Four Windowed FIR Filters 

 
 
In summary, windowing can improve the functionality of Simple Moving Averages for 
trading.  The selection of the window function to be used is a tradeoff between ease of 
programming as well as the tradeoff of desired smoothness and group delay lag induced 
by the window.  In many cases a Triangle Window function may be good enough because 
it is super easy to program.  If the Rate of Change is used to help make trading decisions, 
then the use of the Hann Window is the hands-down best choice. 
 
 

Code Listing 1.  SMA Indicator 

{ 
     FIR SMA Indicator 
     (C) 2021   John F. Ehlers 
} 
 
Inputs: 
 Length(20);  
 
Vars: 
 Deriv(0),  
 Filt(0), 
 coef(0), 
 ROC(0), 
 count(0); 
 
//Derivative of the price wave  



Deriv = Close - Open; 
 
Filt = 0; 
coef = 0; 
For count = 1 to Length Begin 
 Filt = Filt + Deriv[count]; 
 coef = coef + 1; 
End; 
If coef <> 0 Then Filt = Filt / coef; 
 
ROC = (Length / 6.28)*(Filt - Filt[1]); 
  
Plot1(Filt); 
Plot2(0); 
 

 
 

Code Listing 2.  Triangle Windowing Indicator 

{ 
     FIR Triangle Weighting Indicator 
     (C) 2021   John F. Ehlers 
} 
 
Inputs: 
 Length(20);  
 
Vars: 
 Deriv(0),  
 Filt(0), 
 coef(0), 
 SumCoef(0), 
 ROC(0), 
 count(0); 
 
//Derivative of the price wave  
Deriv = Close - Open; 
 
Filt = 0; 
SumCoef = 0; 
For count = 1 to Length Begin 
 If count < Length / 2 Then Begin 
  coef = count; 
 End; 
 If count = Length / 2 Then coef = Length / 2; 



 If count > Length / 2 Then Begin 
  coef = (Length + 1 - count); 
 End; 
 Filt = Filt + coef*Deriv[count - 1]; 
 SumCoef = SumCoef + coef; 
End; 
If SumCoef <> 0 Then Filt = Filt / SumCoef; 
 
ROC = (Length / 6.28)*(Filt - Filt[1]); 
 
Plot1(Filt); 
Plot2(0); 

 
 

Code Listing 3.  Hamming Window Indicator 

{ 
     FIR Hamming Window Indicator 
     (C) 2021   John F. Ehlers 
} 
 
Inputs: 
 Length(20), 
 Pedestal(10);  
 
Vars: 
 Deriv(0),  
 Filt(0), 
 coef(0), 
 ROC(0), 
 count(0); 
 
//Derivative of the price wave  
Deriv = Close - Open; 
 
Filt = 0; 
coef = 0; 
For count = 0 to Length - 1 Begin 
 Filt = Filt + Sine(Pedestal + (180 - 2*Pedestal)*count / (Length - 
1))*Deriv[count]; 
 coef = coef + Sine(Pedestal + (180 - 2*Pedestal)*count / (Length - 1)); 
End; 
If coef <> 0 Then Filt = Filt / coef; 
 
ROC = (Length / 6.28)*(Filt - Filt[1]); 



  
Plot1(Filt); 
Plot2(0); 
 

 
 

Code Listing 4.  Hann Window Indicator 

{ 
     FIR Hann Window Indicator 
     (C) 2021   John F. Ehlers 
} 
 
Inputs: 
 Length(20);  
 
Vars: 
 Deriv(0),  
 Filt(0), 
 coef(0), 
 ROC(0), 
 count(0); 
 
//Derivative of the price wave  
Deriv = Close - Open; 
 
Filt = 0; 
coef = 0; 
For count = 1 to Length Begin 
 Filt = Filt + (1 - Cosine(360*count / (Length + 1)))*Deriv[count - 1]; 
 coef = coef + (1 - Cosine(360*count / (Length + 1))); 
End; 
If coef <> 0 Then Filt = Filt / coef; 
 
ROC = (Length / 6.28)*(Filt - Filt[1]); 
  
Plot1(Filt); 
Plot2(0); 
 

 


