Building Trading Systems
On NonLinear Filters

Presented by John Ehlers
Each speaker at the TradeStationWorld Conference acts independently, and no speaking topic, session, seminar or content is affiliated with, or approved, sponsored or endorsed by, TradeStation Technologies, Inc. or any of its affiliates. Topics, sessions and seminars are solely for educational purposes. The speaker roster and session/seminar content are subject to change without notice. No investment or trading advice regarding any security, group of securities, market segment or market is intended or shall be given. Any examples used in sessions, seminars or speaking topics are for illustrative purposes only -- they should never be construed as recommendations or endorsements of any kind. No particular trading strategy, technique, method or approach discussed will guarantee profits, increased profits or the minimization of losses. Past performance, whether actual or indicated by simulated historical tests, is no guarantee of future performance or success.

Testimonials may not be representative of the experiences of other customers and are not indicative of future performance or success.

TradeStation Technologies, Inc., the host of the conference, and TradeStation Securities, Inc. (Member NASD, SIPC and NFA), the conference's premier sponsor, are affiliated companies. "TradeStation," as used in this presentation, refers to the trading analysis software products, platforms and services that have been developed by TradeStation Technologies.
System Design Approach

• Pick nonlinear moving averages as the base technology to react to major moves and avoid whipsaws in sideways markets

• Survey available nonlinear moving averages
• Select a time-based event
• Include volatility guards
• Add loss escape mechanism
Nonlinear Moving Average Survey

• Eight Approaches are considered
 – KAMA (Kaufman Adaptive Moving Average)
 – VIDYA (Variable Index Dynamic Average)
 – MAMA (MESA Adaptive Moving Average)
 – Ehlers Filter
 – Median Filter
 – Median-MA Difference Filter
 – FRAMA (Fractal Adaptive Moving Average)
 – Nonlinear Laguerre Filter
KAMA (Kaufman Adaptive Moving Average)

• Adjusts the alpha of an EMA according to volatility
 – Ratios the price difference over a time span to the sum of the bar-to-bar price differences over the time span

• Alpha is limited to range between a lower and upper bound
KAMA Indicator EL Code

Inputs: Price((H+L)/2), Len(10), FastLen(2), SlowLen(30);

Vars: count(0), Num(0), Denom(0), ER(0), Fastest(0), Slowest(0),
 alpha(0), Filt(0);

Num = AbsValue(Price - Price[Len]);
Denom = 0;
For count = 0 to Len begin
 Denom = Denom + AbsValue(Price[count] - Price[count + 1]);
End;
If Denom <> 0 then ER = Num / Denom;
Fastest = 2 / (FastLen + 1);
Slowest = 2 / (SlowLen + 1);
alpha = Square(ER*(Fastest - Slowest) + Slowest);
Filt = alpha*Price + (1 - alpha)*Filt[1];
If CurrentBar = 1 then Filt = Price;

Plot1(Filt, "KAMA");
VIDYA (Variable Index Dynamic Average)

• Developed by Tushar Chande and Stanley Kroll in “The new Technical Trader”, John Wiley & Sons, 1984

• Dynamically adjusts the alpha of an EMA according to the ratio of the Standard Deviation of prices over a period to the Standard Deviation of prices over a longer period
 – Modifies the alpha of a suggested 9 bar EMA
 • alpha = 2 / (length + 1)
VIDYA Indicator EL Code

Inputs: M(30), N(9);

Vars: k(0), VIDYA(0);

If StdDev(Close, M) <> 0 then k = StdDev(Close, N) / StdDev(Close, M);

Filt = .2*k*Close + (1 - .2*k)*Filt[1];
If CurrentBar = 1 then Filt = Close;

Plot1(Filt, "VIDYA");
MAMA (MESA Adaptive Moving Average)

- Uses the Hilbert Transform to measure the current dominant cycle period
- Computes the phase of the dominant cycle
- Computes the alpha inversely proportional to the rate change of phase
 - Shorter periods have higher rate changes of phase
 - Large alpha - more responsive EMA
 - Longer periods have lower rate changes of phase
 - Smaller alpha - gives EMA more smoothing
- High rate change of phase due to snap-back every 180 degrees ensures EMA will tightly follow price
MAMA Indicator EL Code

Inputs: Price((H+L)/2), speed(.8), FastLimit(.5), SlowLimit(.05);
Vars: Smooth(0), Detrender(0), I1(0), Q1(0), jI(0), jQ(0), I2(0), Q2(0), Re(0), Im(0), Period(0), SmoothPeriod(0), Phase(0),
DeltaPhase(0), alpha(0), Filt(0);
If CurrentBar > 5 then begin
(Compute InPhase and Quadrature components)
I1 = Detrender[3];
(Advance the phase of I1 and Q1 by 90 degrees)
(Phasor addition for 3 bar averaging)
I2 = I1 - jQ;
Q2 = Q1 + jI;
(Smooth the I and Q components before applying the discriminator)
I2 = .2*I2 + .8*I2[1];
Q2 = .2*Q2 + .8*Q2[1];
(Homodyne Discriminator)
Re = I2*I2[1] + Q2*Q2[1];
Im = I2*Q2[1] - Q2*I2[1];
Re = .2*Re + .8*Re[1];
Im = .2*Im + .8*Im[1];
If Im <= 0 and Re <= 0 then Period = 360/ArcTangent(Im/Re);
If Period > 1.5*Period[1] then Period = 1.5*Period[1];
If Period < .67*Period[1] then Period = .67*Period[1];
If Period < 6 then Period = 6;
If Period > 50 then Period = 50;
Period = .2*Period + .8*Period[1];
SmoothPeriod = .33*Period + .67*SmoothPeriod[1];
If I1 <= 0 then Phase = (ArcTangent(Q1 / I1));
DeltaPhase = Phase[1] - Phase;
If DeltaPhase < 1 then DeltaPhase = 1;
alpha = Speed / DeltaPhase;
If alpha < SlowLimit then alpha = SlowLimit;
If alpha > FastLimit then alpha = FastLimit;
Filt = alpha*Price + (1 - alpha)*Filt[1];
End;
If CurrentBar <= 5 then Filt= Price;
Plot1(Filt, "MAMA");
Ehlers Filter

- Unlike most nonlinear filters, it is a FIR filter
- Analogous to determining sharpness of a piece of paper creased and draped over the edge of a table

- FIR coefficients are computed as “distance” vectors - squared price differences are summed
- Coefficients are normalized to their sum for unity gain
Ehlers Filter EL Code

Inputs: Price((H+L)/2), Length(20);

Vars: Smooth(0), count(0), LookBack(0), SumCoef(0), Num(0), Filt(0);

Array: Coef[50](0), Distance2[50](0);

For count = 0 to Length -1 begin
 Distance2[count] = 0;
 For Lookback = 1 to Length-1 begin
 Distance2[count] = Distance2[count] + (Smooth[count] - Smooth[count + Lookback])*(Smooth[count] - Smooth[count + Lookback]);
 End;
 Coef[count] = Distance2[count];
End;

Num = 0;
SumCoef = 0;
For count = 0 to Length -1 begin
 Num = Num + Coef[count]*Smooth[count];
 SumCoef = SumCoef + Coef[count];
End;
If SumCoef <> 0 then Filt = Num / SumCoef;

Plot1(Filt, "Ehlers");
Median Filter

- Rank-order filter
- Easy to compute
- Often used to sharpen video images
- Useful to smooth impulsive type noise by ignoring outliers
Median Filter EL Code

Inputs: Price((H+L)/2), Len(4);

Vars: Filt(0);

Filt = Median(Price, 2*Len + 1);

Plot1(Filt, "Median");
Median-MA Difference Filter

• Adjusts the alpha of an EMA according to the differential responses of Median and MA filters
• Consider a price string of ten 1s
 – Both the Median and MA is 1
• New price data point has a value of 10
 – Median output is still 1 (new price value is ignored)
 – Simple MA value is 1.9
• Searches for a filter length where the output differences fall below a selected threshold
 – Fast moving markets produce the shortest (most responsive) filter
Median-MA Difference Filter EL Code

Inputs: Price((H+L)/2), Threshold(.0025);

Vars: Smooth(0), Length(30), alpha(0), Filt(0);

Length = 39;
Value3 = 1;
While Value3 > Threshold begin
 alpha = 2 / (Length + 1);
 Value1 = Median(Smooth, Length);
 Value2 = alpha*Smooth + (1 - alpha)*Value2[1];
 If Value1 <> 0 then Value3 = AbsValue(Value1 - Value2) / Value1;
 Length = Length - 2;
End;
If Length < 3 then Length = 3;
alpha = 2 / (Length + 1);
Filt = alpha*Smooth + (1 - alpha)*Filt[1];
If CurrentBar < 4 then Filt = Price;
Plot1(Filt, "Med-MA");
FRAMA (Fractal Adaptive Moving Average)

• There is no argument that the market moves as a fractal
• A period is selected to compute the fractal dimension
 – The price difference over the first half of the range, second half of the range, and over the total range is used for the computation
• Since the market prices move as log-normal, the fractal dimension is used to compute filter alpha as
 \[\alpha = \exp(-4.6 \times (Dimen - 1)) \]
 – When Dimen = 1, \(\alpha = 1 \) - a very fast filter
 – When Dimen = 2, \(\alpha = .01 \) - about a 200 bar filter
FRAMA Filter EL Code

Inputs:
Price((H+L)/2), N(20);

Vars:
count(0), N1(0), N2(0), N3(0), HH(0), LL(0), Dimen(0), alpha(0), Filt(0);

N3 = (Highest(High, N) - Lowest(Low, N)) / N;
HH = High;
LL = Low;
For count = 0 to N/2 - 1 begin
 If High[count] > HH then HH = High[count];
 If Low[count] < LL then LL = Low[count];
End;
N1 = (HH - LL)/(N/2);
HH = High[N/2];
LL = Low[N/2];
For count = N/2 to N - 1 begin
 If High[count] > HH then HH = High[count];
 If Low[count] < LL then LL = Low[count];
End;
N2 = (HH - LL)/(N/2);

If N1 > 0 and N2 > 0 and N3 > 0 then Dimen = (Log(N1 + N2) - Log(N3)) / Log(2);

{alpha = .02 when Dimen = .7 and alpha = .33 when Dimen = .05}
alpha = ExpValue(-4.6*(Dimen - 1));
If alpha < .01 then alpha = .01;
If alpha > 1 then alpha = 1;

Filt = alpha*Price + (1 - alpha)*Filt[1];
If CurrentBar < N + 1 then Filt = Price;

Plot1(Filt, "FRAMA");
A Laguerre filter warps time in the filter coefficients
 - Enables extreme smoothing with just a few filter terms

A NonLinear Laguerre filter measures the difference between the current price and the last computed filter output.
 - Objective is to drive this “error” to zero
 - The “error”, normalized to the error range over a selected period is the alpha of the Laguerre filter
Nonlinear Laguerre Filter EL Code

Inputs: Price((H+L)/2), Length(20);
Vars: Diff(0), HH(0), LL(0), count(0), alpha(0), L0(0), L1(0), L2(0), L3(0), Filt(0), FIR(0);

Diff = AbsValue(Price - Filt[1]);
HH = Diff;
LL = Diff;
For count = 0 to Length - 1 begin
 If Diff[count] > HH then HH = Diff[count];
 If Diff[count] < LL then LL = Diff[count];
End;
If CurrentBar > Length and HH - LL <> 0 then alpha = Median(((Diff - LL) / (HH - LL)), 5);
L0 = alpha*Price + (1 - alpha)*L0[1];
L1 = -(1 - alpha)*L0 + L0[1] + (1 - alpha)*L1[1];
L2 = -(1 - alpha)*L1 + L1[1] + (1 - alpha)*L2[1];
L3 = -(1 - alpha)*L2 + L2[1] + (1 - alpha)*L3[1];
Filt = (L0 + 2*L1 + 2*L2 + L3) / 6;
If CurrentBar < Length then begin
 L0 = Price;
 L1 = Price;
 L2 = Price;
 L3 = Price;
 Filt = Price;
End;
Plot1(Filt, "Laguerre");
NonLinear Filter Comparison (1)

MAMA

KAMA

EHLERS

VIDYA
NonLinear Filter Comparison (2)

- Laguerre
- Median
- FRAMA
- Med-MA
Filter Selection Process

- Rank each filter according to smoothness on a scale from 1 to 8
- Rank each filter according to responsiveness on a scale from 1 to 8
- Add the rankings to obtain a score
 - low score is the best filter for the job

<table>
<thead>
<tr>
<th>Filter</th>
<th>Smoothness</th>
<th>Responsive</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAMA</td>
<td>5</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>VIDYA</td>
<td>6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>MAMA</td>
<td>7</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Ehlers</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Median</td>
<td>8</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>Median-MA</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>FRAMA</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Laguerre</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>
Time Based Event

- Line crossings are distinctive events easily identified in automatic systems.
- Create a trigger by delaying the nonlinear filter by one bar.

- The problem is that crossings create whipsaws in sideways markets - need hysteresis.
Volatility-Based Histeresis Channel

- Measure the average range (can use Average True Range if desired)
- Add and subtract a fraction of the average range to the NonLinear Filter
Trading Strategy Code

- Any NonLinear Filter can be used
- To NonLinear Filter code add:
 - Also declare Rng variable and add Frac Input

    ```
    Rng = .1*(High - Low) + .9*Rng[1];
    Value1 = Filt[1] + Rng / Frac;
    Value2 = Filt[1] - Rng / Frac;
    ```

 - If Filt Crosses Over Value1 Then Buy Next Bar on Open;
 - If Filt Crosses Under Value2 Then Sell Short Next Bar on Open;

- Trading Rules are simple
 - Contains time event trigger as Filt[1]
 - Contains Hysteresis channel as ± Rng/Frac

- Trading system is always in the market - reversing between long and short positions
 - Excellent approach for Commodities and ETFs
 - Long-Only positions for stocks can be taken
Efficiency Tips

• Precede indicator or strategy name with a special character like “!” or “*” or “=“
 – This moves your custom indicators and strategies to the top of the TradeStation list

• Precede research indicators and strategies with double special characters like “!!” or “**” or “==“
 – Avoids versionitis - you know you can delete one of these later without worrying about losing content
 – Easy converts to a custom indicator or strategy simply by removing one of the special characters
Optimization Tips

• Optimize one parameter at a time for efficiency
 – Iterate if necessary
• A good optimization will have a gentle “mound”
• Parameters should be robust over a wide range

Frac Optimization on EC

Length Optimization on EC
Maximum Adverse Excursion

• Large losers indicate a loss escape is desirable

• Add the following code to the system to reverse from a losing position

 If MarketPosition = 1 then Sell Short at EntryPrice - PtStop Stop;
 If MarketPosition = -1 then Buy at EntryPrice + PtStop Stop;
Complete System EL Code

Inputs: Price((H+L)/2), Length(20), Frac(5), PtStop(3);

Vars: Smooth(0), count(0), LookBack(0), SumCoef(0), Num(0), Filt(0), Rng(0);

Array: Coef[50](0), Distance2[50](0);

For count = 0 to Length -1 begin
 Distance2[count] = 0;
 For Lookback = 1 to Length -1 begin
 Distance2[count] = Distance2[count] + (Smooth[count] - Smooth[count + Lookback])*(Smooth[count] - Smooth[count + Lookback]);
 End;
 Coef[count] = Distance2[count];
End;

Num = 0;
SumCoef = 0;
For count = 0 to Length -1 begin
 Num = Num + Coef[count]*Smooth[count];
 SumCoef = Sumcoef + Coef[count];
End;

If SumCoef <> 0 then Filt = Num / SumCoef;

Rng = .1*(High - Low) + .9*Rng[1];

Value1 = Filt[1] + Rng / Frac;

Value2 = Filt[1] - Rng / Frac;

If Filt Crosses Over Value1 Then Buy Next Bar on Open;
If Filt Crosses Under Value2 Then Sell Short Next Bar on Open;
If MarketPosition = 1 then Sell Short at EntryPrice - PtStop Stop;
If MarketPosition = -1 then Buy at EntryPrice + PtStop Stop;
System Development Tip

- Plot Open and Closed Equity to identify problematic trades

```
INDICATOR
Plot1(I_ClosedEquity, "Closed");
Plot2(I_OpenEquity, "Open");
```
24 Year JY Equity Growth
Six Year EC Equity Growth
Performance Summary: All Trades

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Profit</td>
<td>$163,887.50</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$354,862.50</td>
</tr>
<tr>
<td>Total # of trades</td>
<td>222</td>
</tr>
<tr>
<td>Number winning trades</td>
<td>112</td>
</tr>
<tr>
<td>Largest winning trade</td>
<td>$17,962.50</td>
</tr>
<tr>
<td>Average winning trade</td>
<td>$3,168.42</td>
</tr>
<tr>
<td>Ratio avg win/avg loss</td>
<td>1.82</td>
</tr>
<tr>
<td>Max consec. Winners</td>
<td>5</td>
</tr>
<tr>
<td>Avg # bars in winners</td>
<td>48</td>
</tr>
<tr>
<td>Max intraday drawdown</td>
<td>($15,150.00)</td>
</tr>
<tr>
<td>Profit Factor</td>
<td>1.86</td>
</tr>
<tr>
<td>Account size required</td>
<td>$15,150.00</td>
</tr>
<tr>
<td>Open position P/L</td>
<td>$200.00</td>
</tr>
<tr>
<td>Gross Loss</td>
<td>($190,975.00)</td>
</tr>
<tr>
<td>Percent profitable</td>
<td>50.45%</td>
</tr>
<tr>
<td>Number losing trades</td>
<td>110</td>
</tr>
<tr>
<td>Largest losing trade</td>
<td>($5,962.50)</td>
</tr>
<tr>
<td>Average losing trade</td>
<td>($1,736.14)</td>
</tr>
<tr>
<td>Avg trade (win & loss)</td>
<td>$738.23</td>
</tr>
<tr>
<td>Max consec. losers</td>
<td>5</td>
</tr>
<tr>
<td>Avg # bars in losers</td>
<td>17</td>
</tr>
<tr>
<td>Max # contracts held</td>
<td>1</td>
</tr>
<tr>
<td>Return on account</td>
<td>1081.77%</td>
</tr>
</tbody>
</table>
Performance Summary: All Trades

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Profit</td>
<td>$166,887.50</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$393,287.50</td>
</tr>
<tr>
<td>Open position P/L</td>
<td>$1,762.50</td>
</tr>
<tr>
<td>Gross Loss</td>
<td>($226,400.00)</td>
</tr>
<tr>
<td>Total # of trades</td>
<td>313</td>
</tr>
<tr>
<td>Number winning trades</td>
<td>120</td>
</tr>
<tr>
<td>Percent profitable</td>
<td>38.34%</td>
</tr>
<tr>
<td>Number losing trades</td>
<td>193</td>
</tr>
<tr>
<td>Largest winning trade</td>
<td>$24,475.00</td>
</tr>
<tr>
<td>Average winning trade</td>
<td>$3,277.40</td>
</tr>
<tr>
<td>Largest losing trade</td>
<td>($2,625.00)</td>
</tr>
<tr>
<td>Average losing trade</td>
<td>($1,173.06)</td>
</tr>
<tr>
<td>Ratio avg win/avg loss</td>
<td>2.79</td>
</tr>
<tr>
<td>Avg trade (win & loss)</td>
<td>$533.19</td>
</tr>
<tr>
<td>Max consec. Winners</td>
<td>5</td>
</tr>
<tr>
<td>Avg # bars in winners</td>
<td>36</td>
</tr>
<tr>
<td>Max consec. losers</td>
<td>7</td>
</tr>
<tr>
<td>Avg # bars in losers</td>
<td>8</td>
</tr>
<tr>
<td>Max intraday drawdown</td>
<td>($14,925.00)</td>
</tr>
<tr>
<td>Profit Factor</td>
<td>1.74</td>
</tr>
<tr>
<td>Max # contracts held</td>
<td>1</td>
</tr>
<tr>
<td>Account size required</td>
<td>$14,925.00</td>
</tr>
<tr>
<td>Return on account</td>
<td>1118.17%</td>
</tr>
</tbody>
</table>
6 Year EC Performance

Performance Summary: All Trades

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Profit</td>
<td>$79,825.00</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$122,062.50</td>
</tr>
<tr>
<td>Open position P/L</td>
<td>$875.00</td>
</tr>
<tr>
<td>Gross Loss</td>
<td>($42,237.50)</td>
</tr>
<tr>
<td>Total # of trades</td>
<td>50</td>
</tr>
<tr>
<td>Number winning trades</td>
<td>24</td>
</tr>
<tr>
<td>Percent profitable</td>
<td>48.00%</td>
</tr>
<tr>
<td>Number losing trades</td>
<td>26</td>
</tr>
<tr>
<td>Largest winning trade</td>
<td>$13,800.00</td>
</tr>
<tr>
<td>Average winning trade</td>
<td>$5,085.94</td>
</tr>
<tr>
<td>Largest losing trade</td>
<td>($4,875.00)</td>
</tr>
<tr>
<td>Average losing trade</td>
<td>($1,624.52)</td>
</tr>
<tr>
<td>Ratio avg win/avg loss</td>
<td>3.13</td>
</tr>
<tr>
<td>Avg trade (win & loss)</td>
<td>$1,596.50</td>
</tr>
<tr>
<td>Max consec. Winners</td>
<td>3</td>
</tr>
<tr>
<td>Max consec. losers</td>
<td>2</td>
</tr>
<tr>
<td>Avg # bars in winners</td>
<td>45</td>
</tr>
<tr>
<td>Avg # bars in losers</td>
<td>16</td>
</tr>
<tr>
<td>Max intraday drawdown</td>
<td>($7,875.00)</td>
</tr>
<tr>
<td>Profit Factor</td>
<td>2.89</td>
</tr>
<tr>
<td>Account size required</td>
<td>$7,875.00</td>
</tr>
<tr>
<td>Max # contracts held</td>
<td>1</td>
</tr>
<tr>
<td>Return on account</td>
<td>1013.65%</td>
</tr>
</tbody>
</table>
The System Works on ETFs

Performance Summary: All Trades

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Net Profit</td>
<td>$8,665.00</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$14,266.00</td>
</tr>
<tr>
<td>Total # of trades</td>
<td>33</td>
</tr>
<tr>
<td>Number winning trades</td>
<td>12</td>
</tr>
<tr>
<td>Largest winning trade</td>
<td>$4,940.00</td>
</tr>
<tr>
<td>Average winning trade</td>
<td>$1,188.83</td>
</tr>
<tr>
<td>Ratio avg win/avg loss</td>
<td>4.38</td>
</tr>
<tr>
<td>Max consec. Winners</td>
<td>3</td>
</tr>
<tr>
<td>Avg # bars in winners</td>
<td>86</td>
</tr>
<tr>
<td>Max intraday drawdown</td>
<td>($2,288.00)</td>
</tr>
<tr>
<td>Profit Factor</td>
<td>2.50</td>
</tr>
<tr>
<td>Account size required</td>
<td>$2,288.00</td>
</tr>
<tr>
<td>Open position P/L</td>
<td>$232.00</td>
</tr>
<tr>
<td>Gross Loss</td>
<td>($5,701.00)</td>
</tr>
<tr>
<td>Percent profitable</td>
<td>36.36%</td>
</tr>
<tr>
<td>Number losing trades</td>
<td>21</td>
</tr>
<tr>
<td>Largest losing trade</td>
<td>($413.00)</td>
</tr>
<tr>
<td>Average losing trade</td>
<td>($271.48)</td>
</tr>
<tr>
<td>Avg trade (win & loss)</td>
<td>$259.55</td>
</tr>
<tr>
<td>Max consec. losers</td>
<td>6</td>
</tr>
<tr>
<td>Avg # bars in losers</td>
<td>18</td>
</tr>
<tr>
<td>Max # contracts held</td>
<td>1</td>
</tr>
<tr>
<td>Return on account</td>
<td>374.34%</td>
</tr>
</tbody>
</table>

Object Lesson:
You can’t make money unless the market moves
The System Works on Stocks, Too

<table>
<thead>
<tr>
<th></th>
<th>CSCO</th>
<th></th>
<th>RTN</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Trades</td>
<td>Long Trades</td>
<td>Short Trades</td>
<td>All Trades</td>
</tr>
<tr>
<td>Total Net Profit</td>
<td>$8,348.00</td>
<td>$5,093.00</td>
<td>$3,255.00</td>
<td>$3,980.00</td>
</tr>
<tr>
<td>Gross Profit</td>
<td>$12,873.00</td>
<td>$7,775.00</td>
<td>$5,098.00</td>
<td>$4,366.00</td>
</tr>
<tr>
<td>Gross Loss</td>
<td>($4,525.00)</td>
<td>($2,682.00)</td>
<td>($1,843.00)</td>
<td>($386.00)</td>
</tr>
<tr>
<td>Profit Factor</td>
<td>2.84</td>
<td>2.9</td>
<td>2.77</td>
<td>11.31</td>
</tr>
<tr>
<td>Open Position P/L</td>
<td>$42.00</td>
<td>$42.00</td>
<td>$0.00</td>
<td>($243.00)</td>
</tr>
<tr>
<td>Total Number of Trades</td>
<td>72</td>
<td>36</td>
<td>36</td>
<td>15</td>
</tr>
<tr>
<td>Percent Profitable</td>
<td>45.83%</td>
<td>58.33%</td>
<td>33.33%</td>
<td>66.67%</td>
</tr>
<tr>
<td>Winning Trades</td>
<td>33</td>
<td>21</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Losing Trades</td>
<td>37</td>
<td>15</td>
<td>22</td>
<td>4</td>
</tr>
<tr>
<td>Even Trades</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Avg. Trade Net Profit</td>
<td>$115.94</td>
<td>$141.47</td>
<td>$90.42</td>
<td>$265.33</td>
</tr>
<tr>
<td>Avg. Winning Trade</td>
<td>$390.09</td>
<td>$370.24</td>
<td>$424.83</td>
<td>$436.60</td>
</tr>
<tr>
<td>Avg. Losing Trade</td>
<td>($122.30)</td>
<td>($178.80)</td>
<td>($83.77)</td>
<td>($96.50)</td>
</tr>
<tr>
<td>Largest Winning Trade</td>
<td>$4,320.00</td>
<td>$4,179.00</td>
<td>$4,320.00</td>
<td>$1,320.00</td>
</tr>
<tr>
<td>Largest Losing Trade</td>
<td>($437.00)</td>
<td>($437.00)</td>
<td>($241.00)</td>
<td>($215.00)</td>
</tr>
<tr>
<td>Max. Consecutive Winning</td>
<td>3</td>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Max. Consecutive Losing</td>
<td>6</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Avg. Bars in Total Trades</td>
<td>53.56</td>
<td>72.83</td>
<td>34.28</td>
<td>56.07</td>
</tr>
<tr>
<td>Avg. Bars in Winning Trade</td>
<td>87.73</td>
<td>105.1</td>
<td>57.33</td>
<td>71.7</td>
</tr>
<tr>
<td>Avg. Bars in Losing Trade</td>
<td>25.16</td>
<td>27.67</td>
<td>23.45</td>
<td>22.75</td>
</tr>
<tr>
<td>Avg. Bars in Even Trades</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>33</td>
</tr>
<tr>
<td>Trading Period</td>
<td>15 Yrs, 10 Dys</td>
<td>3 Yrs, 9 Mths, 17 Dys</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Equity Run-up</td>
<td>$10,025.00</td>
<td></td>
<td>$4,661.00</td>
<td></td>
</tr>
<tr>
<td>Date of Max. Equity Run-up</td>
<td>4/4/2001 13:00</td>
<td></td>
<td>12/1/2004 13:00</td>
<td></td>
</tr>
<tr>
<td>Max. Drawdown (Intra-day Peak to Valley)</td>
<td>($2,694.00)</td>
<td>($3,027.00)</td>
<td>($1,859.00)</td>
<td>($817.00)</td>
</tr>
<tr>
<td>Date</td>
<td>4/14/2000 13:00</td>
<td></td>
<td>5/9/2005 13:00</td>
<td></td>
</tr>
<tr>
<td>Max. Drawdown (Trade Close to Trade Close)</td>
<td>($1,633.00)</td>
<td>($1,558.00)</td>
<td>($733.00)</td>
<td>($250.00)</td>
</tr>
<tr>
<td>Date</td>
<td>2/7/2003 13:00</td>
<td></td>
<td>9/24/2003 13:00</td>
<td></td>
</tr>
</tbody>
</table>

This is an independent presentation not affiliated with TradeStation.
• Eight (or more) systems can be created using NonLinear Moving Averages as a basis
• The systems have four components
 – NonLinear Moving Average
 – Time Event
 – Volatility Histeresis
 – Loss Escape Mechanism
• The systems are robust over long time spans
• The systems are robust over vastly different trading instruments